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The problem...

I unsteadiness associated with incoming turbulent boundary layer,
separation bubble, shear layer, and corner separation

I incipiently separated flow correlates with incoming turbulent
boundary layer and reflected shock/separation bubble correlates
with large separation

I inhomogeneous and anisotropic
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State of the art in turbulence modeling

I one-equation models: linear, quadratic constitutive relation
I two-equation models: linear, non-linear constitutive relations

corrections
I Reynolds-stress models: non-linear algebraic, solving for

Reynolds-stress—expensive

I For Mach = 2.25 and θ = 8.0, turbulence intensity:
√

u′2/U2
∞
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Study the transport of turbulent kinetic energy

The transport equation:

∂(ρ̄k)

∂t
+
∂(ρ̄ũjk)

∂xj
= P + T +Dν − ρ̄ε+Dp + Π +M (1)

I production: the rate of transfer of kinetic energy from the mean
flow to the turbulence

I turbulent transport: propagation of the turbulent kinetic energy
I molecular diffusion: viscous transport of the turbulent kinetic

energy
I dissipation: conversion of turbulent kinetic energy to thermal

internal energy
I pressure diffusion: transport due to pressure and

velocity-gradient interaction
I compressible terms: pressure dilatation and mass flux
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A closer look...

P =− ρ̄ũ′′i u′′j ũi,j Production (2)

T =−

(
ρu′′j

1
2

u′′i u′′i

)
,j

Turbulent Transport (3)

Dν =
(

tiju′′i
)
,j

Molecular Diffusion (4)

ρ̄ε = tiju′′i,j Dissipation (5)

Dp =−
(

p′u′′i
)
,i

Pressure Diffusion (6)

Π = p′u′′i,i Pressure Dilatation (7)

M = u′′i
(
t̄ij,j − p̄,i

)
Mass Flux (8)
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Solver

FDL3DI
I Fifth-order bandwidth- and order-optimized weighted essentially

non-oscillatory (WENO) scheme
I Roe for inviscid fluxes and viscous fluxes were computed using

sixth-order compact scheme
I Implicit time integration with Beam-Warming using two

sub-iterations and approximate factorization
I Counterflow force model used to trip the boundary layer
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Flow and boundary conditions

Property Experiment Simulation
M∞ 2.33 2.33

U∞, m/s 556.0 556.0
P∞, Pa 23,511.0 2351.1
T0, K 295.6 295.6
Tw , K 269.7 269.7
δ99, m 5.3× 10−3 5.3× 10−3

Reδ 175,202.0 17,520.2

I Laminar boundary-layer profile imposed at the inflow
I No slip wall with expected adiabatic wall temperature to

freestream static temperature set to 1.95
I Shock imposed using Rankine-Hugonoit relations by specifying

pre- and post-shock conditions
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Grid

I X, Y, and Z = 95, 25, and 5 non-dimensionalized by δ99

I 1301× 251× 201 for a total of approximately 66M grid points
I 1000 points in the constant area section
I Shock imposed at x = 23.2
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Data averaging?

I How long should the case be run before collecting statistics? - 6
flow-through time

I Flow-through times necessary to converge the high-order
statistics? - 3 and 6 flow-through times

I Centerline versus span-averaged statistics
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Key stations

Station Location x Reθ
1 Incoming flat plate boundary layer 56.0 3270
2 Upstream of the reflected shock 56.6 3280
3 Downstream of the reflected shock 57.5 3300
4 Separation bubble 59.5 -
5 Downstream of the impinging shock 63.4 -
6 Recovered flat plate boundary layer 70.0 -
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Iso-surface of Q-criterion
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Skin friction and normalized velocity

I Beyond x = 60, centerline skin friction oscillates about the
theoretical turbulent skin friction, but span-averaged was
marginally lower

I An even finer mesh should help provide a better match, but at a
higher computational cost

National Aeronautics and Space Administration 13



Reynolds shear stress

I Density scaling necessary
I Boundary layer has not reached an equilibrium state at

Reθ = 3270
I −uv+ = 0.0008y+ holds true, which was shown by Patel et al. [1]
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Turbulent kinetic energy budget

I Similar trends in comparison with the incompressible DNS, but
current simulations shows larger magnitude

I Can be attributed to the lack of mesh resolution at the simulated
Reynolds number—finer mesh or lowering simulated Reynolds
number will improve comparison
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Forward and aft of the reflected shock

I The production and dissipation terms increased by an order of
magnitude aft of the reflected shock

I The trough in the buffer layer of the turbulent transport term
moved closer to the wall and a new peak developed at the
beginning of the log layer
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Forward and aft of the impinging shock

I In the separation bubble, the peak in the production term moved
away from the wall and into the beginning of the log layer

I The peak in the turbulent transport term also shifted away from
the wall

I Aft of the impinging shock budget was reminiscent of the
boundary layer forward of the interaction region
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Aft of the interaction region

I A return to undisturbed pre-shock budget profiles
I Production and turbulent transport terms remained active in the

log and outer layer regions (102 < y+ < 103) with secondary
peaks and troughs.
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Ratio of production-to-dissipation

I P/ε ratio does not become unity in the log layer
I But, a good match with the incompressible DNS in the viscous

sublayer
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Iso-surfaces of the production and dissipation

National Aeronautics and Space Administration 20



Conclusions

I Budgets of the turbulent kinetic energy calculated using the ILES
framework

I Current fine mesh was inadequate to resolve the buffer and log
layer regions even at a reduced Reynolds number

I The station upstream of the interaction did not reach a complete
equilibrium

I Matching trends with that of the incompressible DNS
I Current work: improved inflow and a finer mesh
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...

Questions?
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