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Overview

= Unsteady flow simulations have become more common as
computing power has grown

= Detached Eddy Simulations (DES) have been used in offset

diffusers, aero-acoustics, high lift configurations, aero-optics,
etc.

= DES has provided many success stories, but the best-
practices are still evolving for its usage.

= Expense of DES can limit usage on programs

= Many users still struggle with obtaining and extracting useful data
from unsteady computations

= Degree of required user expertise rapidly grows with the
fidelity of the simulations

= Unsteady simulations can generate terabytes of data which
requires careful scripting to automate user intervention

» The effects of grid and temporal resolution are poorly

understood for many problems as programs do not desire to
pay for such studies before receiving data

= Efficient and massively parallel computing requires CFD code
modifications for modern hardware architecture
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Issues

= How many time steps does one need to collect?

= How large of a time step can a user afford?

= Boeing has used dual time methods to greatly accelerate the clock
time required to obtain statistics.

= Allows time steps to be set based on physics of problem

= Do any particular DES approaches have any advantage in terms of
efficient time intervals?

= Does grid resolution impact the time interval needed to obtain
statistics?

= Can low dissipation or higher order numerics offer help in
reducing the burden of grid requirements?

= Are there other approaches to reduce the amount of data
required?
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Massively Separated Flows — Impact of grid resolution,

topology, and model selection
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= NACA 0021 at 60° AoA, Re=2.7E5
= The plot illustrates cumulative

average of CL as a function of
convective turnover time

Coarser grids require less
integration time as less physics
are resolved and the solution is
more URANS-like

Refined grids can require 500+
turnover times for accurate data

Turbulence model (SA-DDES,
SST-DDES, and SST-SAS) does
not appreciably impact the
required integration time

Grid topology also not a major
factor in required integration
time

Note: This is AFTER the initial
transients have been convected
out of the domain, which can
easily require hundreds of
turnover
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Massively Separated Flows — Impact of grid resolution,
topology, and model selection
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Massively Separated Flows — Impact of grid resolution,

topology, and model selection
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Massively Separated Flows — Impact of grid resolution,
topology, and model selection
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Impact of low dissipation schemes

} vermenta bt ot 20655 s = Decaying isotropic turbulence allows
107 Central Difference various schemes to be directly compared

— =— =— Least Squares (Upwinding)

Bounded Central Difference = Low dissipation schemes can improve high
frequency resolution

= This may allow a user to use a coarser grid
with Bounded Central Difference (BCD) than
with upwind schemes and obtain similar
results. This will allow a user to obtain
similar results in a shorter time on similar

hardware.
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Boeing Time-Accurate Analysis with Flow Control

Characterization of Isolated FO: SD-1 Validation with FOs ON:

CFD Test
Selected for

Continued Analysis

CFD Test
00

 The behavior of an isolated fluidic oscillator was characterized using a high
resolution time-accurate simulation

» Predicted jet frequency and plume behavior (spreading, peak splitting, decay rate, etc.)
were verified using experimental data from a bench test performed by Georgia Tech

* An unsteady boundary condition was developed to avoid modeling of each fluidic oscillator,
reducing the grid size and turn-around time.
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Time step limitations in “real” configurations — S-
ducts with flow control

Fiow Contrel Insert Jet Slot - .
e = o Fluidic Oscillator

= The characteristic time
associated with the fluidic
oscillator, based on nozzle
diameter and core jet Extension
velocity, is approximately 8
microseconds

= The characteristic time
associated with the
diffuser, based on AIP
diameter and core velocity,
IS approximately 526
microseconds

I AFC necessitates two orders of magnitude reduction in the simulation time step

Copyright © 2015 Boeing. All rights reserve d.
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Dynamic Distortion Prediction

« Engines are designed to operate within a range
of dynamic flow distortion

« Exceeding the limits will result in adverse
effects on engine operability, and could lead to AIP Turbulence
loss of aircraft

* |Itis very challenging to accurately predict the
unsteady behavior of a wide range of scales while |
ensuring statistical stationary of the 40-probe |
data

*High quality experimental dataset are needed to | Jeveeees et 1 25
improve and validate CFD technology

0.0 0.03

 Increased confidence in CFD will not only
enable a reduction in the time spent testing in
wind tunnels, but could also lead its use for
certification

Copyright © 2015 Boeing. All rights reserved.
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Full/Sub-scale Dynamic Distortion Relationship

= Distortion descriptors calculated
based on SAE ARP1420B

= Descriptors defined on ring basis T 45 deg
= Circumferential Distortion Intensity — IDC, e
= Radial Distortion Intensity — IDR,

= Max peak value of IDC or IDR drives
Inlet/engine compatibility

= Key similarity parameter is Strouhal
Number: rake, rake,
T, T,
L FullScale ModelScale

where: r = Sample Time

L = Characteristic Length (Engine Face Diameter)
T, = Total Temperature (~ constant) rake,

Copyright © 2015 Boeing. All rights reserved.
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Full/Sub-scale Dynamic Distortion Relationship (cont'd)

= Relationship between full scale and model scale becomes:

D

_ ms
Tms = z-fs

ms
D fs

where: ms = Model Scale
fs = Full Scale

= Max peak value of IDC or IDR Nominally occurs within ~30
secs on full-scale basis

= For a 40 in diameter fan and a 5 in AIP 40-probe rake:

D
T =—"T :i30 = 3./5seC
D 40

fs

Almost 4 seconds of CFD Data Needed to Simulate Testing

An Extreme Challenge For Present-Day CFD Capabilities !!

Copyright © 2015 Boeing. All rights reserve d.
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Non-deterministic Methods

= Certification / Qualification by analysis
» Cost of developing new aircraft continues to increase

 We are expected, and must deliver, higher performance more
affordably

* Need a longer term vision for technology development and
deployment

« Geometry preparation, grid generation/adaptation, turbulence model,
uncertainty quantifications

« Source of CFD error not well understood at corners of envelope
(turbulence model, grid resolution, numerics, etc.)

* Non-deterministic approaches are essential to quantify CFD results

CFD will not be primary source of data for design, optimization, and
certification-by-analysis unless the uncertainty of results is quantified

Copyright © 2015 Boeing. All rights reserved.
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Conclusions and Recommendations
= Full flight envelop analysis requires routine use of unsteady
simulations on large scale

» Uncertainty quantification is an essential element of design,
optimization, and certifications/qualifications

= Use of CFD in mix with wind-tunnel and flight-test data
» Flight-testing and Certifications/qualifications by analysis
= Expensive but provides insight to challenges & issues
= Cheaper than flight testing
» Efficient/accurate unsteady turbulence model
= Consensus on turbulence model, best practices, ...

» Unsteady simulation cycle-time must be reduced by one to two
orders of magnitude to impact development cycle

= Highly parallel (10"5to 10”6 cores) and efficient:

= Algorithms (higher-order, compact stencil, low dissipation scheme, FV-
hex mesh)

= CFD code/process architecture
= Mesh adaptatlon

Copyright © 2015 Boeing. All rights
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Path Forward

= Create a consortium of experts from academia, government labs,
and industry

= Massively parallel

= Algorithms / turbulence models

= Adaptation

= High-quality test data

= |[dentify the use cases (i.e. benchmark cases)

» The gap between the US and Europe in unsteady flow technology
has grown over the past decade

= Significant investment is required

= Tight collaboration between the technology developer and end-users
(i.e. within a consortium)

An organization, adequate resources, and collaboration team is a must for success
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